Atlas of Rural and Small-Town America

The Atlas of Rural and Small-Town America provides statistics by broad categories of socioeconomic factors incluiding people, jobs, county characteristics, income, and veterans.

usda.gov-rural_atlas-1.1.1. Modified 2020-08-12T04:37:06

Resources | Packages | Documentation| Contacts| References| Data Dictionary

Resources

  • jobs. Unemployment rates, labor force participation
  • people. General demographics, such as population, race, ethinicity and migration.
  • vets. Population of veterans, racial demographics, and when served.
  • income. Median incomes and poverty rates
  • counties. Classification of Counties for poverty, urban vs rural, poverty rates and economic structures.

Documentation

Source Document Notes

The following notes are included from the RuralAtlasData22.xls file.

Notes:

  1. All indicators included in the atlas are available in this spreadsheet. They are organized in separate tabs for each category of data: People, Jobs, Agriculture, and County Classifications. There are additional indicators available in this spreadsheet that are NOT in the atlas. These are indicated by “n” in the “Map” column in the Variable Name Lookup tab.
  2. The Variable Name Lookup tab connects the short name used in Row 1 for each indicator with a more detailed description of the indicator. 3. Counties and county equivalents listed in each tab vary slightly due to different configurations used by the various Federal sources of data. Most variation occurs in Alaska and Virginia.
  3. Blank data cells for specific counties indicate values that were not available, not applicable, or suppressed.
  4. Census of Agriculture county data are available from National Agricultural Statistics Service (NASS) and no longer included in the atlas.

Version History

  • 22.0 – July 2020 – County population estimates and annual unemployment/employment data for 2019 were added to the atlas maps and download files; earlier estimates were revised.
  • 21.0 – April 2020 – Data from the American Community Survey were updated to 2014-18 (5-year average county-level data), and poverty and income measures based on the Small Area Income and Poverty Estimates (SAIPE) were updated to 2018.
  • 20.0 – July 2019 – County population estimates and annual unemployment/employment data for 2018 were added to the atlas maps and download files; earlier estimates were revised.
  • 19.0 – April 2019 – Data from the American Community Survey were updated to 2013-17 (5-year average county-level data), and poverty and income measures based on the Small Area Income and Poverty Estimates (SAIPE) were updated to 2017.
  • 18.0 – June 2018 – Updated population, migration, employment and unemployment, with revised estimates for 2010-16; added 2017 population, migration, employment, and unemployment estimates.
  • 17.0 – March 2018 – Variables based on data from the American Community Survey (ACS) were updated to 2012-16 (5-year averages), and poverty and income measures based on the Small Area Income and Poverty Estimates (SAIPE) were updated to 2016.
  • 16.0 – July 2017- Updated population, migration, employment and unemployment, with revised estimates for 2010-15; added 2016 population, migration, employment, and unemployment estimates.
  • 15.0 – May 2017 – The ERS 2015 County Typology Codes (non-overlapping economic types) were revised for six counties to correct a coding error. The revised classifications are as follows: Pendleton, KY (Mining-dependent); Alger, MI (Government-dependent); Hickory, MO (Recreation); Washington, RI (Government-dependent); Leon, TX (Mining-dependent); and Tucker, WV (Government-dependent).
  • 14.0 – March 2017 – Variables based on data from the American Community Survey (ACS) were updated to 2011-15 (5-year averages), and poverty and income measures based on the Small Area Income and Poverty Estimates (SAIPE) were updated to 2015.
  • 13.0 – July 2016 – The single-year total population and migration estimates were updated: estimates for 2015 were added; the estimates for July 2010-July 2014 were revised. New/revised unemployment rates and employment change variables (Bureau of Labor Statistics, Local Area Unemployment Statistics data) were added for 2010 through 2015.
  • 12.0 – March 2016 – The American Community Survey (ACS) (ACS) data were updated from 2009-13 to 2010-14; the 2004 ERS county typology codes were replaced with the 2015 edition; poverty and median household income from the Small Area Income and Poverty Estimates (SAIPE) data were updated from 2013 to 2014.
  • 11.0 – In September 2015, the American Community Survey (ACS) data were updated to 2009-13. Updated persistent poverty and child poverty classifications were added to the atlas. Population, unemployment, and income data were updated. Census of Agriculture maps are now available on the National Agricultural Statistics Service website.
  • 10.0-In April 2014, new and revised population estimates, migration rates, and natural changes rates were added for 2010-13. Oil & Gas counties were updated and corrected, and “high poverty” counties were updated from 2007-11 to 2008-12 with American Community Survey (ACS) data.  
  • 9.0 – March 2014 – All American Community Survey (ACS) (ACS) data were updated to the latest 5-year average (2008-12).
  • 8.0 – February 2014 – Added three new variables of oil and natural gas production to the County Classifications category.
  • 7.0 – June 2013 – Added employment and unemployment data through 2012, updated estimates revised by Bureau of Labor Statistics. Added population estimates (through 2012) and migration data (through 2010). Simplified the user interface.
  • 6.0 – May 2013 – Added the 2013 Rural Urban Continuum Codes and Urban Influence Codes, based on 2010 Census and the 2006-10 American Community Survey (ACS). Added Metropolitan, Nonmetropolitan, and Micropolitan Indicators based on the February 2013 Office of Management and Budget release. Added new Persistent Poverty Counties 1980-2011, and High Poverty Counties 2007-11 indicators.
  • 5.0 – January 2013 – American Community Survey (ACS) variables updated to the 2007-11, 5-year county averages.
  • 4.0 – May 2012 – Added veterans data from the Census Bureau’s 2006-10 American Community Survey (ACS). Updated and added unemployment and job data for 2007-11. Added variable showing the percent of principal farm operators on present farm less than 10 years, 2006-10.
  • 3.0 – April 2012 – Updated 2005-09 data from the American Community Survey (ACS) with 2006-10 data; added 2010 poverty estimates.
  • 2.0 – June 2011 – Added 2010 Census data, and racial/ethnic data from the 2007 Census of Agriculture.
  • 1.0 – Feb 2011 – Initial Rural Atlas release.

Source: USDA, Economic Research Service using data from U.S. Bureau of the Census, Bureau of Labor Statistics, and Bureau of Economic Analysis.

Contact: John Cromartie, USDA, Economic Research Service; email: john.cromartie@usda.gov.

Contacts

Data Dictionary

jobs | people | vets | income | counties

jobs

Column NameData TypeDescription
fipsstring
geoidstring
statestring
countytext
unemprate2019number
unemprate2018number
unemprate2017number
unemprate2016number
unemprate2015number
unemprate2014number
unemprate2010number
unemprate2007number
pctempchange1019number
pctempchange1819number
pctempchange0719number
pctempchange0710number
pctempagriculturenumber
pctempminingnumber
pctempconstructionnumber
pctempmanufacturingnumber
pctemptradenumber
pctemptransnumber
pctempinformationnumber
pctempfirenumber
pctempservicesnumber
pctempgovtnumber
numcivemployedinteger
unemprate2011number
numcivlaborforce2011integer
numemployed2011integer
numcivlaborforce2012integer
numunemployed2010integer
numcivlaborforce2008integer
numunemployed2011integer
numemployed2010integer
numcivlaborforce2010integer
numunemployed2009integer
numemployed2009integer
numcivlaborforce2009integer
unemprate2008number
unemprate2012number
numemployed2008integer
unemprate2009number
numunemployed2008integer
numunemployed2015integer
numunemployed2019integer
numcivlaborforce2019integer
numunemployed2018integer
numemployed2018integer
numcivlaborforce2018integer
numunemployed2017integer
numemployed2017integer
numcivlaborforce2017integer
numunemployed2016integer
numemployed2016integer
numcivlaborforce2016integer
numcivlaborforce2013integer
numemployed2015integer
numemployed2012integer
numunemployed2014integer
numemployed2014integer
numcivlaborforce2014integer
unemprate2013number
numunemployed2013integer
numemployed2019integer
numemployed2013integer
numunemployed2007integer
numemployed2007integer
numcivlaborforce2007integer
numunemployed2012integer
numcivlaborforce2015integer

people

Column NameData TypeDescription
fipsinteger
geoidstring
statestring
countytext
popchangerate1819number
popchangerate1019number
totalpopest2019integer
netmigrationrate1019number
naturalchangerate1019number
net_international_migration_rate_2010_2019number
popchangerate0010number
netmigrationrate0010number
naturalchangerate0010number
immigration_rate_2000_2010number
popdensity2010number
under18pct2010number
age65andolderpct2010number
whitenonhispanicpct2010number
blacknonhispanicpct2010number
asiannonhispanicpct2010number
nativeamericannonhispanicpct2010number
hispanicpct2010number
multipleracepct2010number
nonhispanicwhitepopchangerate0010number
nonhispanicblackpopchangerate0010number
nonhispanicasianpopchangerate0010number
nonhispanicnativeamericanpopchangerate0010number
hispanicpopchangerate0010number
multipleracepopchangerate0010number
whitenonhispanicnum2010integer
blacknonhispanicnum2010integer
asiannonhispanicnum2010integer
nativeamericannonhispanicnum2010integer
hispanicnum2010integer
multipleracenum2010integer
foreignbornpctnumber
foreignborneuropepctnumber
foreignbornmexpctnumber
nonenglishhhpctnumber
ed1lessthanhspctnumber
ed2hsdiplomaonlypctnumber
ed3somecollegepctnumber
ed4assocdegreepctnumber
ed5collegepluspctnumber
avghhsizenumber
femalehhpctnumber
hh65plusalonepctnumber
ownhomepctnumber
foreignbornnuminteger
totalpopacsinteger
foreignbornafricapctnumber
ed3somecollegenuminteger
ed2hsdiplomaonlynuminteger
ed1lessthanhsnuminteger
totalpop25plusinteger
ed5collegeplusnuminteger
totalocchuinteger
foreignbornasiapctnumber
ed4assocdegreenuminteger
foreignborneuropenuminteger
nonenglishhhnuminteger
hh65plusalonenuminteger
ownhomenuminteger
femalehhnuminteger
totalhhinteger
foreignborncentralsouthampctnumber
foreignborncentralsouthamnuminteger
foreignborncaribpctnumber
foreignborncaribnuminteger
foreignbornafricanuminteger
foreignbornasianuminteger
foreignbornmexnuminteger
landareasqmiles2010number
age65andoldernum2010integer
totalpop2010number
under18num2010integer
net_international_migration_2000_2010number
naturalchangenum0010number
netmigrationnum0010number
totalpopest2012integer
totalpopest2013integer
totalpopest2010integer
totalpopest2014integer
totalpopest2011integer
net_international_migration_2010_2019integer
naturalchange1019integer
totalpopest2015integer
totalpopest2016integer
totalpopest2017integer
netmigration1019integer
totalpopest2018integer
totalpopestbase2010integer

vets

Column NameData TypeDescription
fipsinteger
geoidstring
statestring
countytext
vets18opctnumber
gulfwar2vetspctnumber
gulfwar1vetspctnumber
vietnameravetspctnumber
koreanwarvetspctnumber
ww2vetspctnumber
malevetspctnumber
femalevetspctnumber
whitenonhispvetspctnumber
blackvetspctnumber
hispanicvetspctnumber
otherracevetspctnumber
medianvetsincinteger
mediannonvetsincinteger
lessthanhsvetspctnumber
highschonlyvetspctnumber
somecollegevetspctnumber
collegedegreevetspctnumber
lfpvetsratenumber
uevetsratenumber
pctvetspoornumber
pctnonvetspoornumber
pctvetsdisabiltynumber
pctnonvetsdisabiltynumber
civpopvets18to64numinteger
civpop18onuminteger
vets18onuminteger
nonvetsdisabiltyinteger
nonvetspoorinteger
vetsdisabiltyinteger
vetspoorinteger
clfvets18to64numinteger

income

Column NameData TypeDescription
fipsinteger
geoidstring
statestring
countytext
medhhincinteger
percapitaincinteger
povertyunder18pctnumber
povertyallagespctnumber
deep_pov_allnumber
deep_pov_childrennumber
povertyunder18numinteger
povertyallagesnuminteger

counties

Column NameData TypeDescription
fipsinteger
geoidstring
statestring
countytext
ruralurbancontinuumcode2013integer
urbaninfluencecode2013integer
ruralurbancontinuumcode2003integer
urbaninfluencecode2003integer
metro2013integer
nonmetro2013integer
micropolitan2013integer
type_2015_updateinteger
type_2015_farming_nointeger
type_2015_manufacturing_nointeger
type_2015_mining_nointeger
type_2015_government_nointeger
type_2015_recreation_nointeger
low_education_2015_updateinteger
low_employment_2015_updateinteger
population_loss_2015_updateinteger
retirement_destination_2015_updateinteger
perpov_1980_0711integer
persistentchildpoverty_1980_2011integer
hipovinteger
hiamenityinteger
hicreativeclass2000integer
gas_changeinteger
oil_changeinteger
oil_gas_changeinteger
metro2003integer
nonmetronotadj2003integer
nonmetroadj2003integer
noncore2003integer
economicdependence2000integer
nonmetro2003integer
micropolitan2003integer
farmdependent2003integer
manufacturingdependent2000integer
loweducation2000integer
retirementdestination2000integer
persistentpoverty2000integer
noncore2013integer
type_2015_nonspecialized_nointeger
metro_adjacent2013integer
persistentchildpoverty2004integer
recreationdependent2000integer

References

Urls used in the creation of this data package.

Packages

Accessing Data in Vanilla Pandas

import pandas as pd


jobs_df =  pd.read_csv('http://library.metatab.org/usda.gov-rural_atlas-1.1.1/data/jobs.csv')
people_df =  pd.read_csv('http://library.metatab.org/usda.gov-rural_atlas-1.1.1/data/people.csv')
vets_df =  pd.read_csv('http://library.metatab.org/usda.gov-rural_atlas-1.1.1/data/vets.csv')
income_df =  pd.read_csv('http://library.metatab.org/usda.gov-rural_atlas-1.1.1/data/income.csv')
counties_df =  pd.read_csv('http://library.metatab.org/usda.gov-rural_atlas-1.1.1/data/counties.csv')

Accessing Package in Metapack

import metapack as mp
pkg = mp.open_package('http://library.metatab.org/usda.gov-rural_atlas-1.1.1.csv')

# Create Dataframes
jobs_df = pkg.resource('jobs').dataframe()
people_df = pkg.resource('people').dataframe()
vets_df = pkg.resource('vets').dataframe()
income_df = pkg.resource('income').dataframe()
counties_df = pkg.resource('counties').dataframe()