A very conprehensive collection of automatically scraped data.
coronadatascraper.com-covid19-1.2.24
. Modified 2020-07-08T15:54:25
Resources | Packages | Documentation| Contacts| Data Dictionary
Resources
- source_tidy. Scraped coronavirus data, with one row for each type of observation.
- source_jhu. Scraped coronavirus data, in format similar to JHU
- source. Scraped coronavirus data, with one row per region per day and one type of observation per column.
Documentation
The Corona Data Scraper scrapes data from a wide variety of sources to produce a dataset with both global scope and regional granularity. See the project page for more details.
Documentation Links
- homepage Project homepage, sith links to files and documentation
- Documentation Page
Contacts
- Wrangler
Data Dictionary
source_tidy | source | source_jhusource_tidy
Column Name | Data Type | Description |
---|---|---|
name | text | |
level | string | |
city | string | City Name |
county | string | County Name |
state | text | State Name |
country | string | Country code |
population | integer | Total population of the region |
lat | number | Latitude |
long | number | Longitude |
aggregate | string | |
tz | string | |
date | date | Observation Date |
type | string | Type of observation: cases, deaths, recovered or active |
value | number | Value of the observatoin. |
source
Column Name | Data Type | Description |
---|---|---|
name | text | |
level | string | |
city | string | City Name |
county | string | County Name |
state | text | State Name |
country | string | Country code |
population | number | Total population of the region |
lat | number | Latitude |
long | number | Longitude |
url | string | Source Url |
aggregate | string | |
tz | string | |
cases | integer | Sum of deaths, recoveries and active. |
deaths | integer | Cumulative number of deaths |
recovered | integer | Cumulative number of recoveries |
active | integer | Cumulative number of active confirmed infections. |
tested | integer | Number tested |
growthfactor | number | Growth factor, compared to previous observation. 1+ growth rate |
date | date | Observation Date |
source_jhu
Column Name | Data Type | Description |
---|---|---|
name | text | |
level | string | |
city | string | |
county | text | |
state | text | |
country | text | |
lat | number | |
long | number | |
population | integer | |
url | string | |
aggregate | string | |
tz | string | |
2020_01_22 | integer | |
2020_01_23 | integer | |
2020_01_24 | integer | |
2020_01_25 | integer | |
2020_01_26 | integer | |
2020_01_27 | integer | |
2020_01_28 | integer | |
2020_01_29 | integer | |
2020_01_30 | integer | |
2020_01_31 | integer | |
2020_02_01 | integer | |
2020_02_02 | integer | |
2020_02_03 | integer | |
2020_02_04 | integer | |
2020_02_05 | integer | |
2020_02_06 | integer | |
2020_02_07 | integer | |
2020_02_08 | integer | |
2020_02_09 | integer | |
2020_02_10 | integer | |
2020_02_11 | integer | |
2020_02_12 | integer | |
2020_02_13 | integer | |
2020_02_14 | integer | |
2020_02_15 | integer | |
2020_02_16 | integer | |
2020_02_17 | integer | |
2020_02_18 | integer | |
2020_02_19 | integer | |
2020_02_20 | integer | |
2020_02_21 | integer | |
2020_02_22 | integer | |
2020_02_23 | integer | |
2020_02_24 | integer | |
2020_02_25 | integer | |
2020_02_26 | integer | |
2020_02_27 | integer | |
2020_02_28 | integer | |
2020_02_29 | integer | |
2020_03_01 | integer | |
2020_03_02 | integer | |
2020_03_03 | integer | |
2020_03_04 | integer | |
2020_03_05 | integer | |
2020_03_06 | integer | |
2020_03_07 | integer | |
2020_03_08 | integer | |
2020_03_09 | integer | |
2020_03_10 | integer | |
2020_03_11 | integer | |
2020_03_12 | integer | |
2020_03_13 | integer | |
2020_03_14 | integer | |
2020_03_15 | integer | |
2020_03_16 | integer | |
2020_03_17 | integer | |
2020_03_18 | integer | |
2020_03_19 | integer | |
2020_03_20 | integer | |
2020_03_21 | integer | |
2020_03_22 | integer | |
2020_03_23 | integer | |
2020_03_24 | integer | |
2020_03_25 | integer | |
2020_03_26 | integer | |
2020_03_27 | integer | |
2020_03_28 | integer | |
2020_03_29 | integer | |
2020_03_30 | integer | |
2020_03_31 | integer | |
2020_04_01 | integer | |
2020_04_02 | integer | |
2020_04_03 | integer | |
2020_04_04 | integer | |
2020_04_05 | integer | |
2020_04_06 | integer | |
2020_04_07 | integer | |
2020_04_08 | integer | |
2020_04_09 | integer | |
2020_04_10 | integer | |
2020_04_11 | integer | |
2020_04_12 | integer | |
2020_04_13 | integer | |
2020_04_14 | integer | |
2020_04_15 | integer | |
2020_04_16 | integer | |
2020_04_17 | integer | |
2020_04_18 | integer | |
2020_04_19 | integer | |
2020_04_20 | integer | |
2020_04_21 | integer | |
2020_04_22 | integer | |
2020_04_23 | integer | |
2020_04_24 | integer |
Packages
- s3 s3://library.metatab.org/coronadatascraper.com-covid19-1.2.24.csv
- csv http://library.metatab.org/coronadatascraper.com-covid19-1.2.24.csv
- source https://github.com/sandiegodata/covid19.git
Accessing Data in Vanilla Pandas
import pandas as pd
source_tidy_df = pd.read_csv('http://library.metatab.org/coronadatascraper.com-covid19-1.2.24/data/source_tidy.csv')
source_jhu_df = pd.read_csv('http://library.metatab.org/coronadatascraper.com-covid19-1.2.24/data/source_jhu.csv')
source_df = pd.read_csv('http://library.metatab.org/coronadatascraper.com-covid19-1.2.24/data/source.csv')
Accessing Package in Metapack
import metapack as mp
pkg = mp.open_package('http://library.metatab.org/coronadatascraper.com-covid19-1.2.24.csv')
# Create Dataframes
source_tidy_df = pkg.resource('source_tidy').dataframe()
source_jhu_df = pkg.resource('source_jhu').dataframe()
source_df = pkg.resource('source').dataframe()